Objective reduction based on nonlinear correlation information entropy

نویسندگان

  • Handing Wang
  • Xin Yao
چکیده

It is hard to obtain the entire solution set of a many-objective optimization problem (MaOP) by multiobjective evolutionary algorithms (MOEAs) because of the difficulties brought by the large number of objectives. However, the redundancy of objectives exists in some problems with correlated objectives (linearly or nonlinearly). Objective reduction can be used to decrease the difficulties of some MaOPs. In this paper, we propose a novel objective reduction approach based on nonlinear correlation information entropy (NCIE). It uses the NCIE matrix to measure the linear and nonlinear correlation between objectives and a simple method to select the most conflicting objectives during the execution of MOEAs. We embed our approach into both Pareto-based and indicator-based MOEAs to analyze the impact of our reduction method on the performance of these algorithms. The results show that our approach significantly improves the performance of Pareto-based MOEAs on both reducible and irreducible MaOPs, but does not much help the performance of indicator-based MOEAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cycle Time Optimization of Processes Using an Entropy-Based Learning for Task Allocation

Cycle time optimization could be one of the great challenges in business process management. Although there is much research on this subject, task similarities have been paid little attention. In this paper, a new approach is proposed to optimize cycle time by minimizing entropy of work lists in resource allocation while keeping workloads balanced. The idea of the entropy of work lists comes fr...

متن کامل

Analysis Of Bridge Safety Assessment With Correlation Between Measuring Points For Bridge Health Monitoring

By using linear statistical coefficients such as Pearson, Spearman and Kendall’s, and nonlinear methods such as time-delayed transfer entropy and mutual information, the correlation between the observation stations of bridge health monitoring system is obtained. A model for predicting structural safety based on the correlation coefficients is established, which provides a new research method fo...

متن کامل

Information Flow and Cross-correlation of Chinese Stock Markets Based on Transfer Entropy and Dcca

Identifying the mutual interaction is a crucial problem that facilitates the understanding of emerging structures in Chinese stock markets. In this paper, we employ transfer entropy and detrended cross-correlation analysis (DCCA) measurement to investigate the mutual interactions of Chinese stock markets. Transfer entropy is a model-free approach in principle and allows us to detect statistical...

متن کامل

Rainfall warning Based on indexs teleconnection, Synoptic Patterns of Atmospheric Upper Levels and Climatic elements a case study of Karoun basin

Rainfall prediction plays an important role in flood management and flood alert. With rainfall information, it is possible to predict the occurrence of floods in a given area and take the necessary measures. Due to the fact that the three months of January, February and March are most floods and most precipitation is occurring this quarter, this study aimed to investigate the factors affecting ...

متن کامل

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft Comput.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016